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Abstract-The onset of convection in a horizontal water layer with regard to the density anomaly (near 
4°C) is studied using linear stability analysis. The resulting perturbation equations are solved with the aid 
of Galerkin’s method. With the choice of reasonable test functions, it is shown that seven terms are 
sufficient for an appioach close to 1%. The results are represented in stability diagrams, Ra = Ra(T,, T2) 
where T, and T, are the temperatures of the lower and upper wall, respectively. The nonlinear 
density-temperature relation is approximated by three different polynomials having 2, 3 and 5 terms. 
Assuming the fifth order polynomial to be exact, the critical Rayleigh numbers calculated with the simple 
parabolic relation are about 10% too large. This discrepancy is reduced to approximately +3x by 

adding a cubic term to the density-temperature relation. 

NOMENCLATURE 

a, thermal diffusivity; 

A, matrix element ; 
Bit coefficients of density-temperature 

relation; 

C,, D,,,, coefficients; 

f> nondimensional density-temperature 

relation ; 
F(z), G(z), perturbation functions; 

99 gravity; 

Ga, Galileo number = gH3/av; 

H, height of water layer; 
H(x, y), perturbation function; 

I. K, integral expression ; 
k. 
Nit 
n, 
P, 
P, 
Pr, 

4, 
Q> 
Ra, 
L 
T 
U, 
X, 

wave number; 
nonlinearity ; 
number of Galerkin terms ; 
power of density-temperature relation; 

pressure; 
Prandtl number = v/a; 

heat flux density; 
internal heat source rate; 

Rayleigh number (gH3/av)p; 
time; 
temperature; 

= (u, 0, w) velocity ; 
= (x, y, z) Cartesian coordinates. 

Greek symbols 

03 coefficient of thermal expansion ; 
0, = (Tl - T)/9 nondimensional 

temperature; 

isothermal walls 
9, = 

T, - T2 

4HiA isoflux walls, 

reference temp. ; 

*Since 1 April, 1978, Motoren und Turbinen Union, 
MTU-Miinchen, 8000 Munich 50, P.O.B. 500640, West- 
Germany. 

nondimensional internal heat source 

rate; 
thermal conductivity; 
kinematic viscosity; 

density ; 
stability parameter; 
time, nondimensionalized by HZ/a ; 
test functions; 

Nabla operator ; 
Laplace operator; 

two-dimensional Laplace operator. 

Superscripts 
I 

perturbed value; 
unperturbed value. 

I. INTRODUCTION 

To REDUCE the heat waste of nuclear and thermal 

power plants, the construction of artificial lakes as 
heat stores has been in discussion for several years. 

These heat stores are filled during the summer 
months with the warmed up cooling water from 
thermal power plants. After a storage period of some 

months, hot water is taken from the storage to 

supply the district heating system during winter 
months. During this period, the cool return stroke 
enters the storage at the bottom to be used during 
the filling period as cooling water in the power 

plants. Due to inevitable external heat losses and 
internal temperature differences an internal heat 

exchange by conduction and convection occurs 
during the storage period. Whereas the effect of heat 
conduction can be easily described the convection 
process still yields some unsolved problems, due to 
the complex governing equations, the stability 
problems involved and the density anomaly of water, 
Straub [ 11. Therefore, the present work concentrates 
on the onset of convection in water at temperatures 
where the density anomaly has to be taken into 
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account. In a water layer of height H and infinite 
horizontal dimensions which is cooled from above or 
heated from below convection occurs if the vertical 

temperature gradient exceeds a certain, i.e. critical, 
value. This is usually expressed by a Rayleigh- 

number whose critical value is 1708 in the mentioned 
classical problem. Benard [2] was probably the first 
who observed the regular cell structure for Ru 

> 1708 (it has been pointed out by some authors 
that the cells he visualized, where due to surface 
tension effects rather than thermal convection) 

whereas early analytical considerations were made 
by Rayleigh [3] and Jeffreys [4]. This classical 

problem has been studied intensively ever since. The 

results are summarized in the famous book by 

Chandrasekhar [5] and recently by Koschmieder 

161. More recently the problem has also been treated 
by Joseph [7]. 

In the above problem, it is assumed that the 
temperature gradient is constant and the density is a 

linear function of temperature. For water with its 
density maximum near 4°C the densityytemperature 

relation is no more linear and may be approximated 
by a polynomial of degree p. Hence, even for a 

constant temperature gradient the density profile is a 
nonlinear function of the vertical coordinate -_. The 
differences to the classical problem can be seen by 
considering the melting of an ice-layer and the 

freezing of a water layer. 

The temperature- and density profiles in a melting 

ice layer heated from below and from above are 
shown in Figs. 1 and 2. Figure 1 shows the 
conduction profiles in the water layer, T2 = O”C, by 

heating from below. T, > 0 C. It is seen that the 

water layer is stably stratified as long as T, < 4°C 

and unstably for T, > 4°C. It should be noted that 
the water-layer between the ice-surface and the 4°C 

isotherm is always stable. The height of the unstable 
layer increases with increasing wall temperature Ti. 

Figure 2 shows the conduction profiles in a water 

layer, T, = O”C, by heating from above, T2 > 0°C. In 

contrast to Fig. 1, the height of the unstable layer 
decreases with increasing wall temperature T2. For 

arbitrary temperatures Tl and T2, one obtains the 
principle stability diagram shown in Fig. 4 where 1, 
= /r(T,) and /I2 = fl(T,) are the isothermal expansion 

coefficients. The Rayleigh numbers Ra, and Ru, are 
defined with fii and fi2 respectively. It is seen that 

regions where Ru,,Ra, < 0 are stably and those 
where Ru,,Ru, > 0 are unstably stratified. Regions 
where Ra, . Ra, < 0 are partially unstably/stably 

stratified. 
The influence of the density anomaly on the onset 

of convection has been studied by several authors. 
Using a parabolic p(T)-function, Veronis [8] con- 
sidered two cases: temperature of the lower wall 
equal to 0°C and temperature of the upper wall 
either equal to 4 or 8°C. 

With the aims of linear stability theory he 
obtained 13.43 x nJ and 87.18 x n4, respectively for 
the critical Rayleigh numbers. The Rayleigh number 

! 
L 
H 

3 (12”Cl z(8”C) s (L”C) 

Frc;. I. Conduction density profiles in a melting ice layer 
heated from below, T2 = 0°C. (a) T, = 4°C: stable water 
layer; (b) T, = 8°C: {upper 4 is stably/lower i is unstably) 
stratified; (c) T, = 12°C: (upper 3 is stably/lower 4 are 

unstably} stratified. 

Z(12’C) 3 (8’C) s fL”C) 

0 U,) 
S- 3 (0°C) 

FIG. 2. Conduction density profiles in a melting ice layer 
heated from above, T, = 0°C. (a) T, = 4°C: unstable water 
layer; (b) T2 = 8°C: {upper i is stably/lower i is unstably) 
stratified; (c) T2 = 12°C: {upper 3 are stably/lower f is 

unstably} stratified. 

is constructed with the height of the unstable water- 
layer. By adding a cubic term to the density 

temperature function Sun et ul. [9] extended the 
work of Veronis and predicted a stability-diagram 
valid in the temperature region 0-35’C. Seki ~‘t al. 
[lo] also used a cubic polynomial, but they defined 

different Rayleigh numbers for the regions T < 4-C 

and T > 4°C. Legros rt al. [I I] considered a sixth 
order polynomial. Their results are in good agree- 
ment with those obtained by Veronis. Wu er (I/. [ 121 
predicted stability curves for the onset of thermal 
convection including surface tension effects. At very 

high supercritical Rayleigh numbers Boger er (II. [ 131 

observed an oscillating water-ice interface in melting 
and freezing experiments. Furthermore, they con- 
clude that the critical Rayleigh number defined 
with the height of the unstable layer is approxi- 
mately 1700. Yen [ 141 and Yen et ul. [I51 observed 
a regular cell structure in a melting ice layer heated 
from below. Furthermore, they have shown that the 
critical Rayleigh number is not a single constant but 
depends on the wall temperature. Tankin ef ul. [16] 
and Farhadieh et al. [17] studied the influence of 
convection on the geometrical structure of the ice- 
surface. In freezing a water layer by cooling from 
below the observed critical Rayleigh number was 
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about 480. Numerical and experimental studies with 
a melting ice layer heated from above have been 
carried out by Seki et al. [18]. The observed critical 
Rayleigh numbers were between 200 and lo5 where 
the wall temperatures varied between 1 and 15°C. 

In all these papers, the critical Rayleigh number is 
defined with the height of the unstable layer. 
Compared to the classical problem this height is not 
known in advance but can be calculated from the 
density-temperature relation. 

In our opinion this situation is rather un- 
satisfactory. It can be improved by defining a 
modified Rayleigh number introducing the height of 
the complete fluid layer rather than the height of the 
unstable layer, Merker et al. [19]. Furthermore, it 
can be shown that the critical Rayleigh number 
depends on the thermal and hydrodynamical boun- 
dary conditions (like the classical problem) and due 
to the density anomaly a second parameter besides 
the Rayleigh number is necessary to describe the 
onset of convection. 

The present paper concentrates on the study of the 
onset of convection in a water layer near tempera- 
tures where the density anomaly can not be 
neglected. In contrast to the papers mentioned 
above, the Rayleigh number is defined with the 
height of the water layer rather than the height of 
unstable part only. The discrepancies in the calcu- 
lated critical Rayleigh numbers due to different 
polynomials used for approximating the density 
temperature relation are discussed in some detail. 
Furthermore, it is shown that the approach with the 
first term in Galerkin’s method is very limited in the 
present problem. 

2. MATHEMATICAL FORMULATION 
OF THE PROBLEM 

The system that we consider is shown schemati- 
cally in Fig. 3. It consists of a horizontal water-layer 
of infinite horizontal length and finite height H 
which is bounded by an upper and lower wall. The 
walls are rigid, no-slip boundaries which are held 
either at different, but uniform temperatures, T1 and 
T,, with T, 3 T2 or at which a uniform heat flux, 4, 
= d2, is maintained. 

Subject to the usual Boussinesq approximation,* 
the transient equations governing this system may be 
expressed (see [20,21]) as 

vu = 0 (I) 

(2) 

DT 
_ = aV2T 
Dt (3) 

with 
P = p(T) 

D d 
-E-+u.V. 
Dt at 

(4) 

*This is named Oberbeck-Boussinesq approximation by 
Joseph [7]. He gives also some interesting historical notes. 

1 

t 

L 
H 

0 

rigid and perfect conducting 

T(1) = T2 
wall with T1 or & constant, resp 

/b/// / / /////////////,‘/.‘.‘,’ 

,/ ,,///[,‘////,‘///i/~‘/” 

T(O) =;, 

rigid and perfect conducting wall 

with T, or 4, constant, resp. 

FIG. 3. Schematic diagram of the water layer. 

The validity of the Boussinesq-approximation and 
the assumption of constant fluid properties are 
intensively discussed in [7,22-241 and are therefore not 
repeated here. 

In the present case, the density can be considered 
as a function of the temperature only. Hence, the 
equation of state reduces to a density-temperature 
function which can be approximated by a poly- 
nomial of order p [25,26]. 

P(T) 
p= 1+B,T+B2T2+...= i B,T’ (5) 

PO i=O 

with T in degrees Celsius and B, = 1. 
With this relation, one obtains for the coefficient of 

thermal expansion: 

P 

= --f-(B,+2B,T+3B,T2+...). 
P 

(6) 

Since the density of water decreases less than 1% as 
the temperature increases from 4 to 4o”C, the density 
appearing in (6) can be considered as a constant, p. 

0 

I%~0 L L 

only lower layer 

is unstable 

I P2<0 

t 

4 
0 

0 T, PC - .4 0 

FIG. 4. Principal stability diagram 
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Table 1. Coefficients for density-temperature polynomiais, p(T)/p,- 1 

II = 2 n=3 II = 3 I, = s* 
T = 10°C T = 20°C 

B, 6.62105 x lo-” 6.59706 x IO-’ 6.85650 x lo-’ 6.79939 x 1om5 
B, -8.27631 x l0-h - 8.82308 x 1O-6 - 8.82063 x 1O-6 -9.10749 x 1om6 
B, 9.61265 x lo-’ 4.16668 x lo-’ 1.00543 x lo-’ 
B, -1.12689x lo-‘? 
B, 6.5928s X 1om’2 

*Values taken from Wagenbreth et al. [26] 

= p(0Y.J). It is evident that this simplification is in 
agreement with the Boussinesq-approximation. 

Hence, one obtains 

(71 

The value of the density maximum of water is prnal 
= 999.9720kg/m’ where the temperature lies be- 
tween 3.9557 < T,,, < 4.0043”C. To determine the 
coefficients Bi we assume T(p,,,f = 4°C. With the 
additional density value p(O’C) = 999.8396 kg/m3 
one obtains the coefficients B, and B2 for the simple 
parabolic density-temperature relation. A polynom 
of order three is obtained by using in addition 
the value p(lO’C) = 999.6987kg/m3 or ~(20°C) 
= 998.2019 kg/m3. 

The calculated coet%icients are given in Table 1 
together with a polynom of order five* from [26]. 
The resulting coefficients of thermal expansion vs 
temperature are shown in Fig. 5 whereas Fig. 6 
shows the deviation jI’ = d,&dT vs temperature. 
From these figures it is obvious that the po~ynomia1 
(3.10) is not recommended. The differences in the 
results using the other polynomials are discussed 
later on. 

Before proceeding further, it is appropriate to 
bring (I)-(4) into a dimensionless form by using N 
as reference length and 3 as reference temperature 
where 9 = TI - T2 for isothermal walls and 9 
= q,Ji/J. if isoflux wall conditions are applied. With 
‘I = at/H2 as dimensionless time (Fourier number) 
one obtains 

vu = 0 (8) 

(9) 

DB 
- = V2@ 
Dr 

p= P@) 
where e = (O,O, - 1). 

For steady state heat conduction the above system 
reduces to 

8P -= 
a= 

(11) 

*This polynom is considered to be “exact” within the For f = 1, equation (19) reduces to that for the 
temperature range 0-40°C. classical problem. 

With the boundary conditions 

Q,= o = 0, Q(,= , = I : constant wall temperature 

(12) 
do/ 
Liz=,,, = - L(~~~~I) : constant wall heat flux 

one obtains the solution 

By considering small perturbations of the conduction 
solution the solutions of (8), (9) and (10) can be 
expanded into the small parameter F; i.e. 

0(x,5)= 0(z)+s8(x,t)+.... 

With similar expansions for u and P and by equating 
terms of equal power in E one obtains at 0(ej the 
usual linearized perturbation equations 

v.ti=o (14) 

I SP 
p.z = e.Ra~fl.f‘-VB+V2ii 

r I 

with 

f = 1 $N,B$N,t72+NJu3+.... 07) 

It can be shown that the coefficients of nonlin~rity 
are given by 

1 ’ (i, 
NC = -j z fi (T, - r, y. (18) 

The number of the nonlinearity-coefficients Ni is 
equal to p- 1. 

Equations (14)-(15) can be reduced by eliminating 
the velocity com~nents ir and 2 and the pressure B. 
After some manipulations which may be found 
elsewhere one ends up with two equations for the 
perturbation velocity component io and the per- 
turbation temperature 8, 



FIG. 5. Coefficient of thermai expansion vs temperature for different density-temperature polynomials 
(Table I ), 
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3. METHOD OF SOLUTION 

Only a very brief outline of the solution method 
will be given here. For details see Chandrasekhar 
151. Denn [27] and Finl~yson [28]. 

Since (19) and (20) are linear, the solution can be 
written as 

& = F(z).H(?c..~)exp((~~) 

D = G(z) I Hfx, y) exp(at). 
(21) 

Putting (21) into (19) and (20) it can be seen that the 
resulting equations are separable if and only if 

V;H+k2H = 0. (22) 

Hence, the perturbations are periodic in x and p. 
Obeying (22) one obtains 

/ 
;;-(I)“-/$) (@-kZ)F=: -k”Ru.,f.G (23) 

[u-(D2-k’)]G= F. (24) 

Equations (23) and (24) describe an eigenvalue 
problem; i.e. solutions for F(z) and G(z) exist for 
certain combinations of {cr. k, Ru) only. The eigen- 
value g, 0 = o,+irr, is a measure for the temporary 
decay, or increase, of the perturbation amplitudes. 
These amplitudes are arnplj~~ if (7, > 0 and are 
damped if err < 0; hence, o, = 0 denotes the case of 
neutrat stability. It is said, that the principle of 
exchange of stabiiity is vaiid if CF; = 0 as c, = 0. This 

The eigenfunctjons F(z) and G(z) are approximated 

by 

G(z) = i D&,(z) 

(25) 

where each of the test functions (P,(z) and tj,(z) 
satisfies the boundary conditions. 

Substituting (25) in (23) and (24) results in a 
residual in each of the equations because (25) is not a 
solution of (23) and (24). The essence of Galerkin’s 
method is now to establish equations for the 
coefficients C, and D, by requiring that the residuals 
be orthogonal to each of the approximating 
functions, 

1 

s;=, 
Res,(C,, D,)~,(z)~z = 0: 

[I= I,...,L (26) 

J 

1 
Res,jC,.D,)rl/,(z)dz = 0: 

r=o 
y=l ‘M. ,....‘ 

Equations (26) are a set of L+M linear, homo- 
geneous algebraic equations for the C, and D,. One 
obtains, after substituting (23). (24) and (25) into 
(X), integrating by parts and rearranging the result 

A12 1 

MO / pA 7 
.‘, 

,_ _-______---I I._._ l=n (27) 
AZ’ A21 00 ‘.. LO 

A”’ ,,I 
___ OM ‘.. LA4 

with the coefficients 

is sometimes also called the point of marginal 
stability. For ui p 0 as o, = 0 oscillatory instabilities 
occur which are sometimes called over-stabilities. To 
the author’s knowledge no general proof that CT is 
real has yet been carried out for the present case. 
Merker et al. [29] have merely shown that there may 
exist solutions with CJ~ # 0 as or = 0. Nevertheless, in 
seeking a solution we shall assume that ci is real. The 
point of marginal stability is therefore achieved by 
setting ci = 0. It may be noted that the Prandtl 
number disappears for c = 0 from (25), and the 
eigenvalue problem reduces to jk, Ruj = 0. 

For solid walls the hydrodynamic boundary 
conditions are given with F = F’ = 0. The thermal 
boundary condition gives G = 0 for isothermal walls 
and G’ = 0 for constant wall heat Aux. 

Equations (25) and (26) are solved for 0 = 0 using 
Galerkin’s method, see Finlayson [28] for example. 

A” = l2 +2k21’ +kSIO IP IP lP IP 

A,$ = k2Ra 
:i 

I 

.f~G;4,d: 
:=o 

1 
/421 = _ 

(4 
1 

#cl, dz 
3=0 

A== = K’ fk2Ko mq mq my” 

where the integrales are given by 

12X) 

A nonzero solution exists if and only if the 
determinant of coefficients vanishes. This happens for 
certain combinations of the values Rn and k only. 
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Hence, from 

DET[A(k, Ra; Ni)] = 0 (30) 

follows for the minimum (critical) Rayleigh number 

Ra, (or Ra,) 

Ra, = MIN[Ra(k; Ni)]. (31) 

Using a procedure described by Finlayson [28], one 
obtains the testfunctions 

41 = (1 _z)z.z2+1 (32) 

$, = (1 -Z)Pm : 7;,. = const. 

ijm = I +(I -z)*.z~+~: 4, = const. 
(33) 

It can easily be shown that each of these test- 

functions satisfies the boundary conditions. With 

these testfunctions the coefficients (28) and (29) are 
actually calculated with L = M = n terms. 

4. RESULTS 

It can be seen from the general diagram of 
stability, Fig. 4, that the Rayleigh number Ra, is 
always defined as positive if the layer is unstably 

stratified whereas the Rayleigh number Ra, changes 
sign. Hence, it appears reasonable to describe the 
stability of a layer by using Ru, instead of Ra,. 

The calculated critical Rayleigh numbers using p 
= 5 and n = 7 are shown in Fig. I for the boundary 

condition T, = const. and in Fig. 8 for 4, = const. 

The convergence of the Galerkin method has been 
proved by comparing the calculated Rayleigh num- 

bers with those obtained by using n = 9, 11 and 14 
terms instead of 7. From this, it can be concluded 

that the approach with n = 7 is close to 1% in the 
temperature region -6 to +4o”C except the 
asymptotic region near 4°C where Ra, ) 105. 

The region below the isotherm T2 = 4°C refers to 

a density profile with no maximum value, i.e. the 
complete layer is unstably stratified. For this case, it 
can be said, the bending of the density profile is 

weak, and accordingly, the effect on the critical 
Rayleigh number is small. The calculated Rayleigh 

lo5 

-6 0 G 10 20 30 LO 
1, rC - 

FIG. 7. Critical Rayleigh number vs temperature T, 
(bottom) for T, = const. 

numbers are between 1708 and about 3600 for T, 

= const. and between 720 and about 1600 for q, 
= const. 

The region above the isotherm T2 = 4°C refers to 

a density profile with maximum value, i.e. only a part 
of the layer is unstably stratified. The bending of the 
profile is called strong and the effect on the critical 

Rayleigh number is considerable. The Rayleigh 
numbers are remarkably bigger than those obtained 

for the classical oroblem. One mav become more 
familiar with the siability diagrams in Fig. 7 and 8 b: 

considering the following two cases. 

/ I I I I I \,T,=-LT 1 i 

Y 

i 

Ral; i ! ! I I 
I / 

lo2 I”’ ll’tIII’lIII “‘I’ 
-6 0 L 10 20 30 LO 

T,l”C - 

FIG. 8. Critical Rayleigh numbers vs temperature T, 
(bottom) for 4, = const. 

1. Temperature of the upper wall is T, < 4°C for 

example T2 = 0°C: Cooling this water layer with Tl 

< 0°C from below results in an unstable stratifi- 

cation, where the bending of the profile is weak. The 

water layer is stable if heated from below with 

temperatures 0 < Tl d 4°C and it becomes partially 
unstable if Tl exceeds 4°C. The density profile 

includes then the maximum density and the bending 
of the profile is strong. 

2. Temperature of the upper wall is T, > 4°C; for 

example T2 = 8°C: If this layer is cooled from below 

with T, < 4°C the upper part between the upper wall 
and the 4”C-isotherm remains stable whereas the 
lower part becomes unstable. The strong bending of 
the profile affects the Rayleigh number considerably. 

The layer is stable if cooled with temperature Tl 

between 4 and 8°C. 
The layer is unstably stratified if heated from 

below with TL > 8°C. As the bending of the profile is 
weak the Rayleigh number remains in the region 
between 1700 and 3600. 
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5. SOME COMMENTS ON THE APPROACH 
WITH THE FIRST GALERKIN TERM ONLY 

It has been shown so far that the critical Rayleigh 
number depends on the wall temperatures. r, and 
i”,. It can be seen from Fig. 9 that this is also true for 
the critical wave number. The diagram shows that 

the critical wave number is equal to 3.11 for density 
profiles excluding the point of maximum density and 

it increases as the bending increases for profiles 

including the point of maximum density. As the wave 

number is inversely proportional to the size of the 
resulting convection cells, the cell size increases as 

the height of the unstable layer increases. This result 
is what one would expect. 

Coming to the point now, it follows from (27) for 
II = 1 

Ra = t~!~,+2k21~“+k41~,)‘(K~,+kzK’do) _____-~- ._.- 
I -.--. (34) 

k’ 
i’ 

.f’W,)‘d~. ’ cbo$od-- 
u:=o 1 W-=0 

The minimum (critical) Rayleigh number is obtained 

as 

x (K;, +k2K&)/‘k2 -+ MIN. (35) 

For n = 1, the integrals lb0 and K&, are mere 
numbers. Hence, from (35) follows that the minimum 
(critical) wave number is a constant which does not 

depend on the curvature of the density profile. 
For that reason the approach with the first term 

only is limited to regions where k, 2 const., see Fig. 

9. 

6. COMPARING POLYNOMIALS OF ORDER 
2,3 AND 5 AS APPROXIMATIONS FOR THE 

DENSITY-TEMPERATURE FUNCTION 

As mentioned above, we consider the Rayleigh 
numbers calculated with the 5th order polynomial as 
exact. Hence, the following errors can be defined 

Figure 10 shows these errors f,,, vs 7’1 for T2 = 0°C. 

It can be seen that the calculated Rayleigh numbers 

using the parabolic polynomial are on an average 
about loo% too large. This error reduces to about 3?,< 
if a cubic term is added to the temperature density 

relation. 
The approach with the first term only and a 

parabolic relation results in an average error .fl,2 of 
about 20%. Furthermore, it is interesting to note that 
the errors resulting from the neglected higher order 
Galerkin terms and that from the neglected higher 
order terms in the density-t~perature polynomial 
compensate each other so that one obtains fi,Z 
< .fi,5 as Tl > 25°C. In addition, it can be seen that 
the approach with the first Galerkin term is 

30 

20 

10 

t G 
H 
TO 

-6 
-6 0 4 10 20 30 

T, /*C - 
Fit;. 9. Curves of constant critical wave number I\ in a Ti 
-T, temperature chart. (A! Region where the :lpproxi- 
mation with the first term only (n = 1) gives reasonable 
results. (R) Region where higher order terms are needed 

(approx. 7) to achieve reasonable results. 

/; 1 -----_5100 

10 10 

I 

1 - A.- _-. I 

10 T,f'Cl 20 - 30 

FE. IO. Errors .ji,, vs temperature T, for T2 = O’C and 
isothermal walls. 

completely false near the density maximum. The 
errors fi ,2 and ,f, .5 tend to infinity as Tl approaches 
8°C and 0°C. respectively. Figure 11 shows the errors 

f n.p vs Tl for 7-, = 8°C. In opposition to the case 
shown in Fig. 10 the bending of the density profile is 
weak for Tl > 8°C and accordingly, the resulting 
errors are smaller. Principally, what has been said to 
Fig. 10 is valid for this case too. 

7. ANALOGY BETWEEN FLUIDS HAVING 
A DENSITY ANOMALY AND THOSE HAVING 

INTERNAL HEAT SOURCES 

The problem of the onset of convection due to 
internal heat sources has been treated by Sparrow et 
ul. [30], Suo-Anttila et al. [31], Pnueli [32] and 
Cheung [33]. 



Convection in a horizontal water layer 513 

IO 

t 

I 

fw 
% 

O,l 
-6 0 4 6 10 20 30 LO 

11 (%I - 

FIG. 11. Errors J& vs temperature T, for T, = 8°C and 
isothermal walls. 

It will be shown in this chapter that the predicted 
stability diagram for fluids with density maximum is 

identically valid for those having internal heat 

sources. 
(a) The temperature profile in a horizontal fluid 

layer having homogeneously distributed heat sources 

Q is given by Fourier’s law 

ii2T Q 
---==, 
a;2 1 

From this follows for the temperature profile 

according to the boundary conditions T(z = 0) = T, 
and T(z = H) = T,, 

Qz’ QHz 
T=zn-y+(T2-Tl);+Tl. 

For a normal fluid the density is a linear function of 
temperature, hence 

p-1 = -fi,,(T-To). 
PO 

Combining the last two equations gives 

p-1 = -PO 
PO 

Tl-T,+(7;-T,); 

(36) 

(b) If there are no heat sources present, the 
temperature profile reduces to the linear one T = 

(T,-T,)(zIW+T,. 
Introducing the nonlinear density-temperature 

relation 

P 
-- 1 =B,T+B2T2+... 
PO 

leads to 

P 
~- 1 =B,T,+B,T; 
PO 

(37) 

Equating terms of like power in z in (36) and (37) 

one obtains for the unknown coefficients B,, B, and 

T, 

B, = Bo 
QH2 
~ 

TI+G _* 
21 (T, - T2)’ 1 

B=_QH’ ” 
2 

21 (T, - T2)’ 

T _Qff2 
0 

T,T, 
2/2 (Tl - T2)’ 

(38) 

It follows for the “fictive” nonlinearity, equation (18) 

to8 
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FIG. 12. Rayleigh number Ra, vs nonlinearity N, for a 
parabolic density-temperature relation and T, = const. N, 
> 0: complete layer is unstably stratified. N, .z 0: only 

lower part is unstably stratified. 



G. P. MERKER, P. WAAS and U. GRIGULL 

, 

p=2 
I 

--n=t 1 
--n=5 1 

103 - \ 

I I-‘ Ra, 

102 

10-2 16”hl 1 IO 102 

FIG. 13. Rayleigh number Ra, YS nonlinearity N, for 
parabolic density-temperature relation and 4, = const. N, 

> 0: complete layer is unstably stratified. N, < 0: only 
lower part is unstably stratified. 

after substituting the coefficients (38) 

2K 
N,ZP------ 

T, +T, --r,T,- 
(39) 

I-K- +2K2 -__ 
T - T2 CT, -T,? 

where K = QH2/[2A(T, -T,)]. 
Therefore, the dimensionless diagrams, Figs. 12 

and 13 describe the onset of convection in a 
horizontal fluid layer having a nonlinear density 
temperature relation, as well as in a fluid layer with 
homogeneous distributed heat sources. One should 
keep in mind that the comments in Chapter 6 
concerning the approach with the first Galerkin’s 
term refer also to the case with internal heat sources. 

In principle, the case with a nonhomogeneous heat 
source, i.e. Q = Q(z) can be treated correspondingly. 
One obtains expressions for the “higher” non- 
linearities Ni with i 2 2. but the stability diagrams 
cannot be presented in the same simple way. 
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CONVECTION DANS UNE COUCHE D’EAU HORIZONTALE 
AVEC EFFET DE DENSITE MAXIMALE 

R&m&--On &udie la convection dans une couche d’eau horizontale en considbrant I’anomalie de 
den& (pris de 4’C) et en utilisant l’analyse de stabiliti linkaire. Les tquations de perturbation sent 
rtsolues g I’aide de la mCthode de Galerkin. Avec le choix de fonctions convenables, on montre que 7 
termes sont suffisants pour une approche voisine de 19%. Les rt?sultats sont reprbsentis par des 
diagrammes de stabiliti, Ra = RajT,, T2) oti Tl et Tz sont les tempkratures respectives des parois 
inf&ieures et sup6rieures. La relation non lineaire entre densitb et temp&ature est approch&e par trois 
polynomes d&rents ayant 2, 3 et 5 termes. Supposant exact Ie polynome du c~nqui~me ordre, les 
nombres de Rayleigh critiques calcul&s avec la simple relation parabolique sont trop &levb d’environ lo?/, 

Cet &cart est rkduit i approximativement +3”,‘, en ajoutant un terme cubique B cette relation 
densit&temptrature. 

Z~amm~nfa~ung-.Es wird der EinfluB der nichtlinearen Dichte-Temperatur-Beziehung von Wasser in 
der Nlhe der Dichteanomalie bei etwa 4°C auf das Einsetzen der Konvektion in einer horizontalen 
Schicht untersucht. Die linearen St6rdifferentialgleichungen werden mit dem Galerkin Verfahren gel&. 
Bei geeigneter Wahl der Testfunktionen geniigen 7 Terme der Galerkin-Entwicklung fiir eine Genauigkeit 
von etwa 1%. Die berechneten kritischen Rayleigh-Zahlen sind in Stabilitlts-Diagrammen als Funktion 
der Temperaturen Ti (Unterseite) und ‘I2 (Oberseite) dargestellt. Die nichtlineare Dichte-Temperatur- 
Beziehung wird durch Polynome mit 2 (Parabel), 3 und 5 Termen angenlihert. Es wird gezeigt, daf3 die 
mit der einfachen Parabel berechneten Rayleigh-Zahlen gegeniiber dem als “exakt” angenommenen 
Polynom mit 5 Termen im Mittel urn etwa 107; groD sind. Durch Hinzunahme eines kubischen Terms 

reduziert sich dieser Fehler auf etwa + 3%. 

B03HMKHOBEHME KOHBEKlJMM B rOPM30HTAJlbHOM CJlOE BOAbl l-lPM 
MAKCMMAnbHOM 3HAqEHMM rUIOTHOCTM 

AHnoTaun% - C noMoutbt0 nsHei?Horo aHann3a ~cTo~~~HBocTH 4iccneayexa B03HHKHoBenHe K~HB~K- 
UHH B ropH30HTajxbHoM cnoe ~oabl c ~&TOM aHoMan%H eg nno~Hocr~( npe 4°C. lIonyseeabre 
ypaBHeHHa BO3MymeHn~ pemaloTcn MeToBOM raJIipK&iHa. COOTB~T~B~~~~M Bbi60pOM HeO6XO~~M~X 
npO6HMX (byHKUNji IlOKa3aH0, ‘iT0 A3IB nO.~yqeH~B ~OOTBeTCTBHB 6 f 7; LtOCTaTOSHO CeMU 9,leHOa. 
Pe3ynbTaTbI nl?efiCTaBJieHbI B BH$te 8HarpaMM yC7Oii’#HBOCTS Ra = R&T,, r,), FiXfZ T, W T, - COOTBe:T- 
CTBeHHO TeMllCtpaTypa HHEHeii H BepXHeii CTeHOK. HenHHeiiHOe COOTHOmeHHe Memay R,,OTHOCTbH) li 
TeMflepaTypOti amlpOKCHMHpye~CB TpeMR pa3JlH’lHbIMH nOnHHOMaMH C 2, 3 W 5 ‘IJfWdMW. npI4 yCJIO,M,,, 

‘(TO nOJIHHOM 5-r0 IlOpBnKa IlBJllleTCIl TOYHUM, nOJIyqaeM, ST’0 Bbt’illCJleXHe KpUTHSeCKOrO 3HaqeHnR 
qHcna Penen c noMou.tbro npoc~oro napa6onHsecKoro cooTHomenHR 3aabnuaeT ero Ha IO:/,. 3TO 
3aBbnueHHe CHmuaeTCx npeMepHo no + 3 ?/ no6aeneHHeM Ky6HrecKoro CnaraeMoro B TeMnepaTypsym 

3aBACHMOCTb n,!OTHOCTH. 


