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Abstract—The onset of convection in a horizontal water layer with regard to the density anomaly (near
4°C) is studied using linear stability analysis. The resulting perturbation equations are solved with the aid
of Galerkin’s method. With the choice of reasonable test functions, it is shown that seven terms are
sufficient for an approach close to 1%, The results are represented in stability diagrams, Ra = Ra(T;, Ty)
where T; and T, are the temperatures of the lower and upper wall, respectively. The nonlinear
density—temperature relation is approximated by three different polynomials having 2, 3 and 5 terms.
Assuming the fifth order polynomial to be exact, the critical Rayleigh numbers calculated with the simple
parabolic relation are about 10% too large. This discrepancy is reduced to approximately +3°% by
adding a cubic term to the density—temperature relation.

NOMENCLATURE

a, thermal diffusivity ;

A, matrix element ;

B;,  coefficients of density-temperature
relation;

C, D,, coefficients;

1, nondimensional density—temperature
relation;

F(z), G(z), perturbation functions;

ds gravity;

Ga, Galileo number = gH?/av;

H, height of water layer;

H(x, y), perturbation function;

I,K, integral expression;

k, wave number ;

N;,  nonlinearity;

n, number of Galerkin terms;

s power of density—temperature relation;

P, pressure;

Pr,  Prandtl number = v/a;

4, heat flux density;

0, internal heat source rate;

Ra, Rayleigh number (gH3/av)B;

t, time;

T, temperature;

u, = (u,v, w) velocity;

X, = (x,y, z)} Cartesian coordinates.

Greek symbols
B, coefficient of thermal expansion;
0, = (T, — T')/3 nondimensional
temperature;

{Tl—Tz

qH/A
*Since 1 April, 1978, Motoren und Turbinen Union,
MTU-Miinchen, 8000 Munich 50, P.O.B. 500640, West-
Germany.

isothermal walls

isoflux walls,
reference temp. ;

505

K, nondimensional internal heat source
rate;

A, thermal conductivity ;

v, kinematic viscosity;

0, density;

a, stability parameter ;

1, time, nondimensionalized by H?/a;

¢, ¥, test functions;

v, Nabla operator;

V2,  Laplace operator;

V3, two-dimensional Laplace operator.
Superscripts

perturbed value;
unperturbed value.

L]

1. INTRODUCTION

To REDUCE the heat waste of nuclear and thermal
power plants, the construction of artificial lakes as
heat stores has been in discussion for several years.
These heat stores are filled during the summer
months with the warmed up cooling water from
thermal power plants. After a storage period of some
months, hot water is taken from the storage to
supply the district heating system during winter
months. During this period, the cool return stroke
enters the storage at the bottom to be used during
the filling period as cooling water in the power
plants. Due to inevitable external heat losses and
internal temperature differences an internal heat
exchange by conduction and convection occurs
during the storage period. Whereas the effect of heat
conduction can be easily described the convection
process still yields some unsolved problems, due to
the complex governing equations, the stability
problems involved and the density anomaly of water,
Straub [1]. Therefore, the present work concentrates
on the onset of convection in water at temperatures
where the density anomaly has to be taken into
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account. In a water layer of height H and infinite
horizontal dimensions which is cooled from above or
heated from below convection occurs if the vertical
temperature gradient exceeds a certain, l.e. critical,
value. This is usually expressed by a Rayleigh-
number whose critical value is 1708 in the mentioned
classical problem. Benard [2] was probably the first
who observed the regular cell structure for Ra
> 1708 (it has been pointed out by some authors
that the cells he visualized, where due to surface
tension effects rather than thermal convection)
whereas early analytical considerations were made
by Rayleigh [3] and Jeffreys [4]. This classical
problem has been studied intensively ever since. The
results are summarized in the famous book by
Chandrasekhar [5] and recently by Koschmieder
[6]. More recently the problem has also been treated
by Joseph [7].

In the above problem, it is assumed that the
temperature gradient is constant and the density is a
linear function of temperature. For water with its
density maximum near 4°C the density—temperature
relation is no more linear and may be approximated
by a polynomial of degree p. Hence, even for a
constant temperature gradient the density profile is a
nonlinear function of the vertical coordinate z. The
differences to the classical problem can be seen by
considering the melting of an ice-layer and the
freezing of a water layer.

The temperature- and density profiles in a melting
ice layer heated from below and from above are
shown in Figs. 1 and 2. Figure 1 shows the
conduction profiles in the water layer, T, = 0°C, by
heating from below, T; > 0-C. It is seen that the
water layer is stably stratified as long as T, < 4°C
and unstably for T, > 4°C. It should be noted that
the water-layer between the ice-surface and the 4°C
isotherm is always stable. The height of the unstable
layer increases with increasing wall temperature T;.
Figure 2 shows the conduction profiles in a water
layer, T, = 0°C, by heating from above, T, > 0°C. In
contrast to Fig. 1, the height of the unstable layer
decreases with increasing wall temperature T,. For
arbitrary temperatures T; and T,, one obtains the
principle stability diagram shown in Fig. 4 where §,
= B(T,) and f, = B(T,) are the isothermal expansion
coefficients. The Rayleigh numbers Ra, and Ra, are
defined with B, and 8, respectively. It is seen that
regions where Ra,,Ra, <0 are stably and those
where Ra,,Ra, > 0 are unstably stratified. Regions
where Ra, Ra, <0 are partially unstably/stably
stratified.

The influence of the density anomaly on the onset
of convection has been studied by several authors.
Using a parabolic p(T)-function, Veronis [8] con-
sidered two cases: temperature of the lower wall
equal to 0°C and temperature of the upper wall
either equal to 4 or §°C.

With the aims of linear stability theory he
obtained 1343 x n* and 87.18 x n*, respectively for
the critical Rayleigh numbers. The Rayleigh number
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F1G. 1. Conduction density profiles in a melting ice layer

heated from below, T, = 0°C. (a) T, = 4°C: stable water

layer; (b} T, = 8°C: {upper % is stably/lower 1 is unstably}

stratified; (c) T, = 12°C: {upper } is stably/lower % are
unstably} stratified.
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FiG. 2. Conduction density profiles in a melting ice layer
heated from above, T; = 0°C. (a) T, = 4°C: unstable water

layer; (b) T, = 8°C: {upper { is stably/lower § is unstably]
stratified; (c) T, = 12°C: {upper % are stably/lower § is

unstably} stratified.

is constructed with the height of the unstable water-
layer. By adding a cubic term to the density
temperature function Sun et al. [9] extended the
work of Veronis and predicted a stability-diagram
valid in the temperature region 0-35°C. Seki et al.
[10] also used a cubic polynomial, but they defined
different Rayleigh numbers for the regions T <4°C
and T > 4°C. Legros et al. [11] considered a sixth
order polynomial. Their results are in good agree-
ment with those obtained by Veronis. Wu er al. { 12]
predicted stability curves for the onset of thermal
convection including surface tension effects. At very
high supercritical Rayleigh numbers Boger et al. [13]
observed an oscillating water—ice interface in melting
and freezing experiments. Furthermore, they con-
clude that the critical Rayleigh number defined
with the height of the unstable layer - is approxi-
mately 1700. Yen [14] and Yen er al. [15] observed
a regular cell structure in a melting ice layer heated
from below. Furthermore, they have shown that the
critical Rayleigh number is not a single constant but
depends on the wall temperature. Tankin et al. [16]
and Farhadieh er al. [17] studied the influence of
convection on the geometrical structure of the ice-
surface. In freezing a water layer by cooling from
below the observed critical Rayleigh number was
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about 480. Numerical and experimental studies with
a melting ice layer heated from above have been
carried out by Seki et al. [18]. The observed critical
Rayleigh numbers were between 200 and 10° where
the wall temperatures varied between 1 and 15°C.

In all these papers, the critical Rayleigh number is
defined with the height of the unstable layer.
Compared to the classical problem this height is not
known in advance but can be calculated from the
density—temperature relation.

In our opinion this situation is rather un-
satisfactory. It can be improved by defining a
modified Rayleigh number introducing the height of
the complete fluid layer rather than the height of the
unstable layer, Merker et al. [19]. Furthermore, it
can be shown that the critical Rayleigh number
depends on the thermal and hydrodynamical boun-
dary conditions (like the classical problem) and due
to the density anomaly a second parameter besides
the Rayleigh number is necessary to describe the
onset of convection.

The present paper concentrates on the study of the
onset of convection in a water layer near tempera-
tures where the density anomaly can not be
neglected. In contrast to the papers mentioned
above, the Rayleigh number is defined with the
height of the water layer rather than the height of
unstable part only. The discrepancies in the calcu-
lated critical Rayleigh numbers due to different
polynomials used for approximating the density
temperature relation are discussed in some detail.
Furthermore, it is shown that the approach with the
first term in Galerkin’s method is very limited in the
present problem.

2. MATHEMATICAL FORMULATION
OF THE PROBLEM

The system that we consider is shown schemati-
cally in Fig. 3. It consists of a horizontal water-layer
of infinite horizontal length and finite height H
which is bounded by an upper and lower wall. The
walls are rigid, no-slip boundaries which are held
either at different, but uniform temperatures, T, and
T,, with T, 2 T, or at which a uniform heat flux, ¢,
= ¢,, is maintained.

Subject to the usual Boussinesq approximation,*
the transient equations governing this system may be
expressed (see [20,21]) as

Vu=0 1)
—DE~<;‘)—~1) 1VP+vV2u 2)
Dt 0 # Po ¢
br_ VT 3
bt ¢ ()
p=p(T) )
with
D
—=—+u'V.
Dt t

*This is named Oberbeck—Boussinesq approximation by
Joseph [7]. He gives also some interesting historical notes.
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F1G. 3. Schematic diagram of the water layer.

The validity of the Boussinesq-approximation and
the assumption of constant fluid properties are
intensively discussed in [ 7,22-24] and are therefore not
repeated here.

In the present case, the density can be considered
as a function of the temperature only. Hence, the
equation of state reduces to a density-temperature
function which can be approximated by a poly-
nomial of order p [25, 26].

T) »
PT) B T4B, T .. = ¥
Po i=0

BT ()
with T in degrees Celsius and B, = 1.

With this relation, one obtains for the coefficient of
thermal expansion:

__Yow
ﬂ_—p<6T>,,

1
—;(Bl+ZBZT+3B3T2+...). (6)

Since the density of water decreases less than 1% as
the temperature increases from 4 to 40°C, the density
appearing in (6) can be considered as a constant, p,

8 T <A
Ra, >0,Ra, <0 Ra, ,Ra, <0
only lower layer stable T >1
is unstable unstable
>0
T & Ra, ,Ra, >0
4
J@,<O Ra, ,Ra, >0
unstable
t Ra, >0,Ra, <0
X stable only lower layer
°C Ra. Ra, <0 is unstable
147342
NI
0 T/C— 4 8

&<0| (>0

F1G. 4. Principal stability diagram.
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Table 1. Coefficients for density-temperature polynomials, p(7T)/p,—1

ne=2 n=23 n=3 no= 5%
T, = 10°C T=20°C
B, 662105 x 1073 6.59706 x 1073 6.85650 x 1073 6.79939 x 1073
B, ~8.27631 x 107° —8.82308 x 107 —8.82063 x 1079 ~9.10749 x 107°
By 961265 x 1078 4.16668 x 10~8 1.00543 x 1077
B, ~1.12689 x 107°
B, 6.59285 x 10712

*Values taken from Wagenbreth et al. [26].

= p(0°C). It is evident that this simplification is in
agreement with the Boussinesg-approximation.
Hence, one obtains

14
B = _L Y iBT N

Poi=1
The value of the density maximum of water is p,.,
= 999.9720kg/m>® where the temperature lies be-
tween 3.9557 < T, <4.0043°C. To determine the
coefficients B; we assume T{p_,,} = 4°C. With the
additional density value p(0°C) = 999.8396 kg/m®
one obtains the coefficients B, and B, for the simple
parabolic density-temperature relation. A polynom
of order three is obtained by using in addition
the value p(10°C) = 999.6987kg/m* or p(20°C)

= 998.2019kg/m>.

The calculated coefficients are given in Table 1
together with a polynom of order five* from [26].
The resulting coefficients of thermal expansion vs
temperature are shown in Fig. 5 whereas Fig. 6
shows the deviation f' =df/dT vs temperature.
From these figures it is obvious that the polynomial
{3.10) is not recommended. The differences in the
results using the other polynomials are discussed
later on.

Before proceeding further, it is appropriate fo
bring (1)-(4) into a dimensionless form by using H
as reference length and 9 as reference temperature
where §=T,—T, for isothermal walls and 9
= q,H/4 if isoflux wall conditions are applied. With
7 = at/H? as dimensionless time (Fourier number)
one obtains

Vu=10 (8)
1 Da o
ﬁA-=e-Ga<4~l)——VP+VZu )
Pr Dt Po
D8
— =V (10)
D1
P= p(f)

where e = (0,0, —1).
For steady state heat conduction the above system

reduces to
&P 7
oz [}

(11)

*This polynom is considered to be “exact” within the
temperature range 0-40°C.

With the boundary conditions

0l,-9=0, 8|, = 1: constant wall temperature

- (12)
dé 4,.H i heat f
— = — ————— constant wall heat flux
2|0y MT-T)

one obtains the solution

z

f=1~—. (13

i (13}
By considering small perturbations of the conduction
solution the solutions of (8), (9) and (10) can be
expanded into the small parameter ¢; Le.

f(x, 1) = B(2)+eb(x, 1) +....

With similar expansions for u and P and by equating
terms of equal power in ¢ one obtains at Ofg) the
usual linearized perturbation equations

Vii=0 (14)
j—-@—ﬁ=e-Ra-6-f—VI3+V2ﬁ (15)
Pr ot
@4»@6-6:\726 (16)
et éz
with
F=14+N NP+ NP+ (17)

It can be shown that the coefficients of nonlinearity
are given by
10 .
N; = — — BT, = T). (18)
Bit
The number of the nonlinearity-coefficients N, is
equal to p— 1.

Equations (14)-(15) can be reduced by eliminating
the velocity components # and © and the pressure P.
After some manipulations which may be found
elsewhere one ends up with two equations for the

perturbation velocity component w and the per-
turbation temperature 6,

18 . -
(mm——vz)vzw:—kagﬂvge (19)

Pr ot
(-0— - VZ>§ = V.
dt

For f =1, equation (19) reduces to that for the
classical problem.

(20)
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3. METHOD OF SOLUTION

Only a very brief outline of the solution method
will be given here. For details see Chandrasekhar
[5]. Denn [27] and Finlayson [28].

Since (19} and {20} are linear, the solution can be
written as

w = F(z)- H{x,y)exp(o1)

~ ) (21
¢ = G(z}  H(x,y)exp(o1).

Putting (21) into (19} and (20) it can be seen that the
resulting equations are separable if and only if

VIH+k*H = 0. (22)

Hence, the perturbations are periodic in x and y.
Obeying (22), one obtains

[i_(DZ_kZ)l(DZ—kz)Fz ~k*Ra-f+G {23)

Pr

[o~(D*~k*]G = F. (24)
Equations (23) and (24) describe an eigenvalue
problem; ie. solutions for F(z) and G{z) exist for
certain combinations of {o, k, Ra} only. The eigen-
value 0, 0 = g,+io; iIs a measure for the temporary
decay, or increase, of the perturbation amplitudes.
These amplitudes are amplified if o, > 0 and are
damped if o, < 0; hence, g, = 0 denotes the case of
neutral stability. It is said, that the principle of
exchange of stability is valid if ¢, = O as ¢, = 0. This

11 11 12
Agg - Ape P Ago
: : i

1t IS 12
Asr - AL ( Ap;

21 a1 | 22
Age - AL | A
221 121 l 2
Aom - ALm : Aom

is sometimes also called the point of marginal
stability. For o; # 0 as o, = 0 oscillatory instabilities
occur which are sometimes called over-stabilities. To
the author’s knowledge no general proof that ¢ is
real has yet been carried out for the present case.
Merker et al. [29] have merely shown that there may
exist solutions with o, # 0 as ¢, = 0. Nevertheless, in
seeking a solution we shall assume that o is real. The
point of marginal stability is therefore achieved by
setting ¢ = 0. It may be noted that the Prandtl
number disappears for ¢ =0 from (25), and the
eigenvalue problem reduces to {k, Ra} = 0.

For solid walls the hydrodynamic boundary
conditions are given with F = F' = 0. The thermal
boundary condition gives G = 0 for isothermal walls
and G’ = 0 for constant wall heat flux.

Equations (25) and (26) are solved for ¢ = 0 using
Galerkin’s method, see Finlayson [28] for example.

G. P. MERkER, P. Waas and U. GriGuLL

The eigenfunctions F(z) and G{z) are approximated
by

L
Fizy= Z Ci¢y2)

=1

A

m=1

(25)

where each of the test functions ¢;(z) and ¥, ()
satisfies the boundary conditions.

Substituting (25) in (23) and (24) results in a
residual in each of the equations because (25) is not a
solution of (23) and (24). The essence of Galerkin’s
method is now to establish equations for the
cocfficients C, and D,, by requiring that the residuals
be orthogonal to each of the approximating
functions,

1
J Res 1 C. Dy ,(z)dz = 0:
z=0

1
J- Res;{Cp. D,y (2)dz = 03
z=0
g=1....M.

Equations (26) are a set of L+M linear, homo-
geneous algebraic equations for the C, and D,,. One
obtains, after substituting (23), (24) and (25) into
{26), integrating by parts and rearranging the result

AR Co |
: S
: . |
A
——————] |- =0 (27)
4/%420 D(J
A§42M _DM
with the coefficients
Al = L4230+ KT,
1
A= R | 00,
z=0
1
Afl = —‘( i, dz
z=0
AL =K, KK, 28)
where the integrales are given by
i
I, = f PPodz: i=0,1,2
e (29)
Ki, = ypidz: =01
Q

A nonzero solution exists if and only if the
determinant of coefficients vanishes. This happens for
certain combinations of the values Ra and k only.



Convection in a horizontal water layer SIt

Hence, from
DET[A(k,Ra; N)] =0 (30)

follows for the minimum (critical) Rayleigh number

Ra, (or Ra,)
Ra, = MIN[Ra(k; N)]. (31

Using a procedure described by Finlayson [28], one
obtains the testfunctions

¢, = (1—-z2)*- 22" (32)
Y= (1—2)z' " T,, = const. a3
= 1+(1—2)*-22"" G, = const,

It can easily be shown that each of these test-
functions satisfies the boundary conditions. With
these testfunctions the coefficients (28) and (29) are
actually calculated with . = M = n terms.

4. RESULTS

It can be seen from the general diagram of
stability, Fig. 4, that the Rayleigh number Ra, is
always defined as positive if the layer is unstably
stratified whereas the Rayleigh number Ra, changes
sign. Hence, it appears reasonable to describe the
stability of a layer by using Ra, instead of Ra,.

The calculated critical Rayleigh numbers using p
= 5 and n = 7 are shown in Fig. 7 for the boundary
condition T,, = const. and in Fig. 8 for ¢, = const.
The convergence of the Galerkin method has been
proved by comparing the calculated Rayleigh num-
bers with those obtained by using n =9, 11 and 14
terms instead of 7. From this, it can be concluded
that the approach with n =7 is close to 1% in the
temperature region —6 to +40°C except the
asymptotic region near 4°C where Ra, > 10°.

The region below the isotherm T, = 4°C refers to
a density profile with no maximum value, ie. the
complete layer is unstably stratified. For this case, it
can be said, the bending of the density profile is
weak, and accordingly, the effect on the critical
Rayleigh number is small. The calculated Rayleigh

10°
[E /l L\ T,,=const.
p=5
o [\ |
4/ 0
10 —
3 3 \ ]
= ——
™~ X v 30, —]
Ro, ~N— U7 _— ==
1708
103 I Lt
-6 0 4 10 20 30 40
T, PC—

Fig. 7. Critical Rayleigh number vs temperature T,
(bottom) for T,, = const.

numbers are between 1708 and about 3600 for T,
= const. and between 720 and about 1600 for ¢,
= const.

The region above the isotherm T, = 4°C refers to
a density profile with maximum value, i.e. only a part
of the layer is unstably stratified. The bending of the
profile is called strong and the effect on the critical
Rayleigh number is considerable. The Rayleigh
numbers are remarkably bigger than those obtained
for the classical problem. One may become more
familiar with the stability diagrams in Fig. 7 and 8 by
considering the following two cases.

105E / \ \ q\“"”;‘
JIN T e
/ |

10 /
i

| S——

TTT

JJ L1l ! |
6 0 4 1 20 30 40
1/°C —

Fig. 8. Critical Rayleigh numbers vs temperature T,
(bottom) for g,, = const.

1. Temperature of the upper wall is T, < 4°C, for
example T, = 0°C: Cooling this water layer with T,
< 0°C from below results in an unstable stratifi-
cation, where the bending of the profile is weak. The
water layer is stable if heated from below with
temperatures 0 < T; < 4°C and it becomes partially
unstable if 7, exceeds 4°C. The density profile
includes then the maximum density and the bending
of the profile is strong.

2. Temperature of the upper wall is T, > 4°C; for
example T, = 8°C: If this layer is cooled from below
with T; < 4°C the upper part between the upper wall
and the 4°C—isotherm remains stable whereas the
lower part becomes unstable. The strong bending of
the profile affects the Rayleigh number considerably.

The layer is stable if cooled with temperature T,
between 4 and 8°C.

The layer is unstably stratified if heated from
below with T; > 8°C. As the bending of the profile is
weak the Rayleigh number remains in the region
between 1700 and 3600.
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5. SOME COMMENTS ON THE APPROACH
WITH THE FIRST GALERKIN TERM ONLY
It has been shown so far that the critical Rayleigh
number depends on the wall temperatures, T, and
T,. It can be seen from Fig. 9 that this is also true for
the critical wave number. The diagram shows that
the critical wave number is equal to 3.11 for density
profiles excluding the point of maximum density and
it increases as the bending increases for profiles
including the point of maximum density. As the wave
number is inversely proportional to the size of the
resulting convection cells, the cell size increases as
the height of the unstable layer increases, This result
is what one would expect.
Coming to the point now, it follows from (27) for
n=1

o To 263140+ K4T30) - (Ko + KK o)
1 1 .

oo d:
=0

(34)

The minimum (critical) Rayleigh number is obtained
as

(I + 2K [0 +k*I30)
x (Kbo+k*K3o)/k> = MIN.  (35)

For n=1, the integrals I, and K, are mere
numbers. Hence, from (35) follows that the minimum
{critical) wave number is a constant which does not
depend on the curvature of the density profile.

For that reason the approach with the first term
only is limited to regions where k. x> const., see Fig.
9.

6. COMPARING POLYNOMIALS OF ORDER
2, 3 AND 5 AS APPROXIMATIONS FOR THE
DENSITY-TEMPERATURE FUNCTION
As mentioned above, we consider the Rayleigh
numbers calculated with the Sth order polynomial as
exact. Hence, the following errors can be defined

Ra,, = Ral?=3
fr.2 = (Ral?Z3 — Ra /R,
fr.s = (RaliZ3 ~ Ra,)/Ra,,
fi.2 = (RalZZ} — Ra,)/Ra,,
fi.s = (RalZ=} — Ra )R,

Figure 10 shows these errors f, , vs T for T, = 0°C.
It can be seen that the calculated Rayleigh numbers
using the parabolic polynomial are on an average
about 10% too large. This error reduces to about 3%
if a cubic term is added to the temperature density
refation.

The approach with the first term only and a
parabolic relation results in an average error f; , of
about 20%,. Furthermore, it is interesting to note that
the errors resulting from the neglected higher order
Galerkin terms and that from the neglected higher
order terms in the density-temperature polynomial
compensate each other so that one obtains f ,
< fi.5 as Ty > 25°C. In addition, it can be seen that
the approach with the first Galerkin term is
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completely false near the density maximum. The
errors f; , and f; 5 tend to infinity as 7, approaches
8°C and 0°C, respectively. Figure 11 shows the errors
fop vs T, for T, = 8°C. In opposition to the case
shown in Fig. 10 the bending of the density profile is
weak for T, > 8°C and accordingly, the resulting
errors are smaller. Principally, what has been said to
Fig. 10 is valid for this case too.

7. ANALOGY BETWEEN FLUIDS HAVING
A DENSITY ANOMALY AND THOSE HAVING
INTERNAL HEAT SOURCES
The problem of the onset of convection due to
internal heat sources has been treated by Sparrow et
al. [30], Suo-Anttila et al. [31], Pnueli [32] and
Cheung [33].
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It will be shown in this chapter that the predicted
stability diagram for fluids with density maximum is
identically valid for those having internal heat
sources.

(a) The temperature profile in a horizontal fluid
layer having homogeneously distributed heat sources
Q is given by Fourier’s law

&#T ¢
o2 A
From this follows for the temperature profile

according to the boundary conditions T(z = 0) = T,
and T(z=H)= Ty,

T Qz* QH:

T2 24

z
+(T2—T1)E+ T;.

For a normal fluid the density is a linear function of
temperature, hence

L P N )
Po

Combining the last two equations gives

p z
—=1=-§, TI_TO+(T2—T1)E

Po
H? : H? [ z\?
_9___9_ =Y 36
2, H 24 \H
(b) If there are no heat sources present, the
temperature profile reduces to the linear one T =
(T,=T)(/H)+T,.
Introducing the nonlinear density—temperature
relation

P

Po

1=B,T+B,T*+...
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leads to
P 2
——=1=B,Ti+B,T;
Po
z
+[31(T2-T1)+232T1(T2—T1)]'E
2
e
+B,(T, - T)) (E) : (37

Equating terms of like power in z in (36) and (37),
one obtains for the unknown coefficients B,, B, and

T,
H?> T,+T,
Bl =ﬂ0 Q —1‘—23—1
20 (T,-T3)
HZ
Bz=—g—i—2 (38)
22 (T,-T)
T QH> T,T,
¢ 2% (L-T)

It follows for the “fictive” nonlinearity, equation (18)

28,9
' B, +2B,T,
108 T T T T T T
|
i | oe2
N I —n=1
107 Lt e n=7—
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FIG. 12. Rayleigh number Ra, vs nonlinearity N, for a

parabolic density—temperature relation and T,, = const. N,

> 0: complete layer is unstably stratified. N, < 0: only
lower part is unstably stratified.
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fower part is unstably stratified.

after substituting the coefficients (38)
2k
T,+ T,
K — 2y
Tl - TZ

where x = QH*/[2A(T; - T,)].

Therefore, the dimensionless diagrams, Figs. 12
and 13 describe the onset of convection in a
horizontal fluid layer having a nonlinear density
temperature relation, as well as in a fluid layer with
homogeneous distributed heat sources. One should
keep in mind that the comments in Chapter 6
concerning the approach with the first Galerkin’s
term refer also to the case with internal heat sources.

In principle, the case with a nonhomogeneous heat
source, Le. Q = Q(z) can be treated correspondingly.
One obtains expressions for the “higher” non-
linearities N, with i > 2, but the stability diagrams
cannot be presented in the same simple way.

LT
(T, - T,)?

N, = (39)

2x?
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CONVECTION DANS UNE COUCHE D'EAU HORIZONTALE
AVEC EFFET DE DENSITE MAXIMALE

Résume—On étudie la convection dans une couche d’eau horizontale en considérant I'anomalie de
densite (prés de 4°C) et en utilisant I'analyse de stabilité linéaire. Les équations de perturbation sont
résolues 4 'aide de la méthode de Galerkin. Avec le choix de fonctions convenables, on montre que 7
termes sont suffisants pour une approche voisine de 19. Les résultats sont représentés par des
diagrammes de stabilite, Ra = Ra{T,, T,) ou T, et T, sont les températures respectives des parois
inférieures et supérieures. La relation non linéaire entre densité et température est approchée par trois
polynomes différents ayant 2, 3 et 5 termes. Supposant exact le polynome du cinquiéme ordre, les
nombres de Rayleigh critiques calculés avec la simple relation parabolique sont trop élevés d’environ 10%

Cet écart est réduit a approximativement +3% en ajoutant un terme cubique a cette relation

densité-température.

Zusammenfassung—Es wird der EinfluB der nichtlinearen Dichte-Temperatur-Bezichung von Wasser in
der Nihe der Dichteanomalie bei etwa 4°C auf das Einsetzen der Konvektion in einer horizontalen
Schicht untersucht. Die linearen Stordifferentialgleichungen werden mit dem Galerkin Verfahren geldst.
Bei geeigneter Wahl der Testfunktionen geniigen 7 Terme der Galerkin-Entwicklung fiir eine Genaunigkeit
von etwa 1%, Die berechneten kritischen Rayleigh—Zahlen sind in Stabilitidts— Diagrammen als Funktion
der Temperaturen 7, (Unterseite) und 7, (Oberseite) dargestellt. Die nichtlineare Dichte-Temperatur-
Beziehung wird durch Polynome mit 2 (Parabel), 3 und 5 Termen angenihert. Es wird gezeigt, daB die
mit der einfachen Parabel berechneten Rayleigh-Zahlen gegeniiber dem als “exakt” angenommenen
Polynom mit 5 Termen im Mittel um etwa 10% groB sind. Durch Hinzunahme eines kubischen Terms
reduziert sich dieser Fehler auf etwa +39.

BO3HMKHOBEHHWE KOHBEKLIMHM B 'OPU3OHTAJIBHOM CJIOE BOJb! MNPHU
MAKCHMAJNBHOM 3HAYEHHUH TTJIOTHOCTH

Ansorauus — C noMOLIbIO JIMHEHHOTO aHanu3a YCTOHYMBOCTH MCCNEAYETCH BO3HMKHOBCHHME KOHBEK-
UMM B TOPH3OHTANLHOM Cf0€ BOAM ¢ yuéTom amomanuu e nnornocru npu 4°C. TMonyuennse
YPaBHCHHSA BO3MYyieHu# pewaroTes MeTonom [anépkuna. CoOTBETCTBYIOUAM BBIGOPOM HEOOXOAMMBIX
npobuslx GyHKUMA NOKA3aHO, 4TO AJIA MOJYHCHHS COOTBETCTBHA B 1%, NOCTATOYHO CEMH HJICHOB.
Pe3yanTaTsl npencTassieHbl B BUIAE AuarpaMm yeroiuusocts Ra = Ra(Ty, T5), rae T; u T, — coorser-
CTBEHHO TemIepaTypa wkHell ¥ BepXueidl crenok. HenunefiHoe COOTHOWICHHE MEXIY NMIOTHOCTBIO M
TEMIIEpaTy pOH ANMPOKCHMHUPYETCS TPEMSst PA3SIHYHBIMH TONHHOMAME ¢ 2, 3 ¥ 5 unenamu. [Ipu yenopuwm,
4TO MOJHHOM 5-r0 NOpAAKA BJIAETCH TOHYHBIM, MONYYAEM, YTO BLIYMC/ICHHE KPUTHYECKOTO 3HAMEHHS
ukcna Penes ¢ noMoupio mpocToro napaGosinveckoro CooTHOWEHHS 3aspiuaeT ero wa 10%. ro
3aBBILICHHE CHUKALTCA NPUMEPHO 10 + 3% nobaBienHem kyGHYECKOrO C/IaracMoro B TEMMEPATYPHY
3aBHCHMOCTb TJIOTHOCTH.



